Generalized weyl's theorem for algebraically quasi-paranormal operators

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weyl’s Theorem for Algebraically Paranormal Operators

Let T be an algebraically paranormal operator acting on Hilbert space. We prove : (i) Weyl’s theorem holds for f(T ) for every f ∈ H(σ(T )); (ii) a-Browder’s theorem holds for f(S) for every S ≺ T and f ∈ H(σ(S)); (iii) the spectral mapping theorem holds for the Weyl spectrum of T and for the essential approximate point spectrum of T . Mathematics Subject Classification (2000). Primary 47A10, 4...

متن کامل

On Quasi ∗-paranormal Operators

An operator T ∈ B(H) is called quasi ∗-paranormal if ||T ∗Tx||2 ≤ ||T x|||Tx|| for all x ∈ H. If μ is an isolated point of the spectrum of T , then the Riesz idempotent E of T with respect to μ is defined by

متن کامل

WEYL’S THEOREM FOR ALGEBRAICALLY k-QUASICLASS A OPERATORS

If T or T ∗ is an algebraically k-quasiclass A operator acting on an infinite dimensional separable Hilbert space and F is an operator commuting with T , and there exists a positive integer n such that F has a finite rank, then we prove that Weyl’s theorem holds for f(T )+F for every f ∈ H(σ(T )), where H(σ(T )) denotes the set of all analytic functions in a neighborhood of σ(T ). Moreover, if ...

متن کامل

Generalized Continuous Frames for Operators

In this note, the notion of generalized continuous K- frame in a Hilbert space is defined. Examples have been given to exhibit the existence of generalized continuous $K$-frames. A necessary and sufficient condition for the existence of a generalized continuous $K$-frame in terms of its frame operator is obtained and a characterization of a generalized continuous $K$-frame for $ mathcal{H} $ wi...

متن کامل

PROPERTY (ω) AND QUASI-CLASS (A,k) OPERATORS

In this paper, we prove the following assertions: (i) If T is of quasiclass (A, k), then T is polaroid and reguloid; (ii) If T or T ∗ is an algebraically of quasi-class (A, k) operator, then Weyls theorem holds for f(T ) for every f ∈ Hol(σ(T )); (iii) If T ∗ is an algebraically of quasi-class (A, k) operator, then a-Weyls theorem holds for f(T ) for every f ∈ Hol(σ(T )); (iv) If T ∗ is algebra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Inequalities and Applications

سال: 2012

ISSN: 1029-242X

DOI: 10.1186/1029-242x-2012-89